|   
 
 Contents page 1 A quick historical recap
      
      2 Introduction to hypergeometric series
      
 2.1 Definition
      
 2.2 A few properties and
simple examples
      
      3 The function Psi : Basis of formulae of kind Machin or BBP
      
 3.1 Definiton
      
 3.2 Differential equations
      
      4 Formula of type Machin
      
      5 BBP formulae: The technic
      
 5.1    : The polylogarithms
      
  5.1.1 Definition
      
  5.1.2 Remarquable values
      
  5.1.3 Formula of duplication
      
  5.1.4 Euler's and Landen's
formulae for the dilogarithm
      
  5.1.5 Landen's formula for
the trilogarithm
      
  5.1.6 Particular values
      
  5.1.7 A few classicals
integrals
      
 5.2 Links between
integrals, BBP formulae and polylogarithm
      
  5.2.1 Notations
      
 5.3 Integrals and BBP
formuale
      
  5.3.1 Integrals equivalent
to BBP series
      
  5.3.2 More general
integrals and BBP formulae
      
  5.3.3 Calculation of
integrals
      
 5.4 Function  and
polylogarithms
      
 5.5 Interest in BBP formulae
      
      6 BBP formulae in base 2 :  ,  ,  in  6.1 The considered integrals
      
 6.2 The method
      
 6.3 Formulae for  ,  ,  and  6.3.1 Application to BBP
formulae for  6.3.2 BBP formulae for  and  6.4 Cases of polylogarithms
of order  : Formulae of order 2
      
  6.4.1 The classicals
expressions :  and  6.4.2 Calculation of  and  6.4.3 Calculion of  relation between  and  6.4.4 Applications of the
determanition of BBP formulae
      
  6.4.5 A few composite
formulae
      
 6.5 Cases of polylogarithms
of order 3
      
  6.5.1 Calculation of  6.5.2 Calculation of  6.5.3 Relationship bewteen  and  value of  6.5.4 Calculation of  6.5.5 Application to the
determinaion of BBP formulae
      
 6.6 Cases of polylogarithms
of order 4
      
  6.6.1 The relationship
      
  6.6.2 Application to the
determination of BBP formulae
      
  6.6.3 Formulae for  and  6.7 Case of polylogarithm
of order 5
      
  6.7.1 The relationship
      
  6.7.2 Application to the
determination of BBP formulae
      
  6.7.3 Formulae for  and  6.7.4 Simplifications of
those formulae
      
      7  fixed integres,  ,  : BBP in base 3
      
 7.1 Formulae for  7.2 Formulae of order 2 :
Integrals with  7.3 Formulae of order 3 :
Integrals with ln  8 And the other bases then
      ? ?
      
      9 Polygamma and Clausen
      
 9.1 The polygamma function
      
 9.2 The function digamma
      
 9.3 Polygamma of order  9.3.1 Links between the
integrals and the BBP formulae
      
  9.3.2 A graphical approach
      
  9.3.3 Analytical
translation
      
 9.4 Combinations by
Kölbig
      
  9.4.1 Clausen's functions
      
  9.4.2 Kölbig's
results.
      
      10 Introduction to factorials and combinations
      
 10.1 A first example
      
 10.2 Umbral calculus
      
      11 Central binomial series
      
 11.1 Inversion of
combinations
      
 11.2 Useful developpments
      
 11.3 First direct
formulae
      
 11.4 Formulae of greater
order
      
  11.4.1 A first formulae
with demo
      
  11.4.2 Calculation of a
derivation of  11.4.3 Uses of  11.4.4 Uses of  11.4.5 Other formulae
      
      12 Other binomial coefficients
      
 12.1 Primitive formulae
      
 12.2 Polynomials
factorial formulae
      
 12.3 So, what does all
this mean ?
      
 12.4 Proofs
      
 12.5 Fast
combinations: BBP factorial formulae
      
 12.6 So, what does all
this mean ?
      
 12.7 Typical proof
      
  12.7.1 The method
      
  12.7.2 Application :
The proof of the first formula
      
  12.7.3 Proof of the
formulae in  12.7.4 Prediction of
formulae
      
 12.8 Product of
combinations
      
      13 Harmonics series
      
 13.1 Proximity of
harmonic series and of polylogarithms
      
 13.2 Study of  and of  13.2.1 Definitons,
remarquable links
      
  13.2.2 Calculation of
certain functions
      
 13.3 Applications of
calculation of certain series
      
  13.3.1 With  13.3.2 With  13.3.3 With  13.3.4 With  13.3.5 With  13.3.6 With  13.3.7 With  13.4 Generalisations
      
  13.4.1 Euler's sum
      
  13.4.2 A formula
combining Harmonic and combination
      
  13.4.3 An other formula
      
  13.4.4 Harmonics of
harmonics!
      
      14 Series of greater factorial: Ramanujan, Borwein,
Chudnovsky....
      
 14.1 Squared central
binomial coefficients: Elliptical formulae
      
 14.2 Cubic central
binomial ceofficients: Ramanujan's Identity
      
      15 Other hypergeometric formulae concerning      
 back to home page
 |