|   
 
 
      The hypergeometric series, harmonic and PiBoris Gourevitch 2 february 2006  Content Page 
      1 A small quick historical recap 
      2 Introduction to hypergeometric series 
 2.1 Definition 
 2.2 A few properties and
simple examples 
      3 The Psi function: Basis of formlae of the kind Machin or
BBP 
 3.1 Definition 
 3.2 Differential equation
      
      4 Formulae of kind Machin 
      5 Formulae BBP : The technic 
 5.1    :
The polylogarithms 
 5.2 Link between integrals,
BBP formulae and polylogarithms 
 5.3 Integrals and BBP
formulae 
 5.4 Function  and
polylogarithms 
 5.5 Interest in BBP formulae
      
      6 BBP formulae in base 2 :  ,  ,  in  6.1 The considered integrals
      
 6.2 The method 
 6.3 Formulae  for  ,  ,  and  6.4 Case of polylogarithms
of order  : Formulae of order 2 
 6.5 Case of polylogarithms
of order 3 
 6.6 Case of polylogarithms
of order 4 
 6.7 Case of polylogarithms
of order 5 
      7  fixed integers,  ,  : BBP in base 3 
 7.1 Formulae for  7.2 Formulae of order 2 :
Integrals with  7.3 Formulae of order 3 :
Integrals with ln  8 And the other bases then
      ? ?
      
      9 Polygamma and Clausen 
 9.1 Polygamma functions
      
 9.2 The function digamma
      
 9.3 Polygamma of order  9.4 Combinations of
Kölbig 
      10 Introduction to factorials and combinations 
 10.1 A first example
      
 10.2 Umbral calculus
      
      11 Central binomial series 
 11.1 Inversion of
combinations 
 11.2 Useful deveoppements
      
 11.3 First direct
formulae 
 11.4 Formulae of greater
order 
      12 Other binomial coefficients 
 12.1 Primitive formulae
      
 12.2 Polynomiales
factorial formulae 
 12.3 Then, what does
this mean ? 
 12.4 Proof 
 12.5 Fast
combinations: factorial BBP formulae 
 12.6 Then, what does
this mean ? 
 12.7 Typical proof
      
 12.8 Product of
combinations 
      13 Harmonic series 
 13.1 Proximity of
harmonic series and of polylogarithms 
 13.2 Study of  and of  13.3 Applications of
the calculations of certain series 
 13.4 Generalisations
      
      14 Series of greater factorial :
Ramanujan, Borwein, Chudnovsky.... 
 14.1 Squared central
binomial coefficients : Elliptical formulae 
 14.2 Cubed central
binomial coefficients: Ramanujan's identity 
      15 Other hypergeometric formulae concerning  References 
 back to home page
 |