|
|
||||||
References
[1] D.BAILEY, J.BORWEIN, P.BORWEIN and S.PLOUFFE, The Quest for , in The Mathématical Intelligencer, vol.18,n 1997 [2] D.BAILEY, P.BORWEIN,
and S.PLOUFFE, On The Rapid Computation of
Various Polylogarithmic Constants, 1996 [3] D.J.BROADHURST,
Polylogarithmic ladders, hypergeometric
series and the ten millionth digits of
and preprint, March 1998. [4] L.LEWIN, Structural Properties of Polylogarithms, 1991 AMS [5] B.GOUREVITCH,
Une formule BBP pour
[6] V.ADAMCHIK, : A 2000-Year Search Changes Direction, in Education and Research, vol. 5, n.1, 1996 [7] G. ALMKVIST, C. KRATTENTHALER, J. PETERSSON, ”Some new formulas for ”, preprint, Matematiska Institutionen, Lunds Universitet, Sweden. and Institut fur Mathematik der Universitat Wien, Austria. [8] J.BORWEIN, D.J.BROADHURST, J. KAMNITZER, ”Central Binomial Sums, Multiple Clausen Values and Zeta Values”, Avril 2000 [9] I.S. GRADSHTEYN, I.M. RYZHIK, ”Table of integrals, Series and Products”, Alan Jeffrey Editor, 5e ed, 1994 [10] O. ESPINOSA, V.H. MOLL, ”On some integrals involving the Hurwitz Zêta Function”, Part 1, Ramanujan Journal, 2001. [11] D.H. BAILEY, R.E. CRANDALL, ”On the random character
of fundamental constant expansions”, Experimental Mathematics 10 :2, page 175. [12] G.
HUVENT, Formules BBP, Seminar ANO, IRMAR,
Lille University. [13] B. GOUREVITCH, J. GUILLERA, ”An extend of BBP sums to binomial sums”, preprint. [14] R. APERY ”Irrationalité de et ” Astérisque 61, 11-13, 1979. [15] K.S. KOLBIG ”The polygamma function and the derivatives of the cotangent function for rational arguments” CERN-IT-Reports, 1996.
back to home page |