The 400 billion’th binary digit of Pi isO

Simon Plouffe

Associate Member of

the
Centre for Experimental &
Constructive Mathematics, Simon Fraser University

and

Technical Associate at

Wolfram Research Inc.

In collaboration with Peter Borwein (SFU)
and David H. Bailey (Ames Research Center, NASA)

Topics

0) Introduction to transcendental numbers.

1) The computation of 1/nis easy.

2) We can extend this to Polylogarithms.

3) There are some identities for Pi.

4) The complexity of the algorithm is nlog(n).
5) Open questions and conclusion.

What do we know about the digits of transcendental numbers or real numbers...
:? (not much).

Transcendental numbers are the numbers that are NOT algebraic (like sgrt(2)).
-They are not solutions of a univariate polynomial with integer coefficient.
-Almost al real numbers are transcendental .

A little history,

INn1844 Liouville showed this construction of a number to be transcendental.

This number istrans. and very near rational numbers.

g 1
10"

= 0.110001000000000000000001....

1873 Hermite : exp(1) or E isaso trans.
1882 Lindemann : Pi istrans.
In1934 Gelfond came with this general statement.

& istrans. if ais algebraic not 0 orl and b agebraic irrational, so 2*sgrt(2) is
transcendental, by the way x*(x"x) is 2 when x is sqrt(2) also (27/8)*(9/4) =
(9HN(27/8). and this number isirrational : (Ramanujan Notebooks, B. Berndt).

Since then, mathematicians have discovered sparse numbers and classes...,
sin(1), JO(1), log(Pi), Gamma(1/4) : Chudnovsky.

The theory of transcendental numbers is a difficult thing to study and there are
very few results that are not really effective. It takes years to grasp the basics,
methods are really deep, etc.

We can do this following diagram about numbersin general.

Les Reéels

facile assez facile tres difficile
nombres nombres Tr. nombres Alg. totalement
rationnels “random”

This diagram could be completely false since there could be transcendental
numbers that are very difficult to compute as well. Ordinary intuition about
numbersisreally miseading.

In ageneral manner (apart from artificially constructed transcendental numbers).

Irrational numbers mean ---more work (cpu + memory)
= digits.

More digits-> More work.

Recently there has been a computation of 2*34 digits of Pi (17.1 billion) and
Y asumasa Kanada is preparing 235 (coming soon to a theater near you). This
amount of digitsisimpossible to print and needs a fairly large computer just to
be on disk! He did it in only 5 hours and 26 minutes (this is quite short
compared to the last computation). There is a catch in this : the machine
(SR2201) isranked in the top 5 in the world... and has 1024 processors.

see

http://www.cecm.sfu.ca/projects/I SC/records.html
for the latest records.

not seriously we could say....E= MC2 = memory * CPUZ ... haha
According to al what we know about numbers : thisfact is (was) probably true,
the more distance you are from the decimal point the more work you have to do.
(memory and CPU).

But thisisFAL SE.

We can compute the n’th digit (binary or hexadecimal) of Pi with small work and
without having to compute the (n-1) digits before... and this without practicaly
any memory at all.

HOW !? first, 3 observations
1) The computation of 1/niseasy, very easy.

2) We can extend this to polylogarithms numbers...

3) There are nice formulas that exist for Pi, log(2), log(2)2 , Pi2 ,arctan(1/2)...

The magic comes from the computation of 1/n.

Everybody knows what islong division, acomputer does it the same way ...

1, 0000V divided by 17
0,0588235294117647...

This computation is carried with 1 digit at the time.
No need to say that thisisvery old (at least 2200 years old).

The k’th decimal of 1/n is given by the solution of (we are in base 10 for clarity).

10° r mod n

the digits are with the computation of r/n from the rank (k+1). More precisely the
k'th digit is[10*r/n]. [] isthe floor function.

In other words,

ARE the same thing. So in base b we have,

b“° r modn
But what is the problem in this ?
The problem iswhen k isreally big or arbitrary large.
By using fast exponentiation (Knuth, The Art of Computer Programming, Vol.
tzkzi’s isan old trick that goes back to 220 BC also called the Binary Method. Well
known to computer scientists.

For example, if we want the digits of 1/257 from the rank1000, then we have to
compute.

10999 = 2 mod 257

We only need to follow these steps (we square and multiply by 10 or we
multiply by 10 successively).

109.10%.102,103,10%,107 1014 1015,1030 1031 1062 10124 10248 10249 1

0498 10499 10998 and finally 10999 mod 257 = 96. So 96/257 = 0,373540...
(each time we take the residue).
are the digits from the 1000’ th position, the 1000°th is 3.

According to what we know (this is introductory numerical analysis, basic 101
stuff).

b™° r mod n
aors
(b™?° r? modn

So by multiplying by b and by squaring successively we arrive in very few
steps at 10999,

In fact the binary expansion of 999 tells us when to do one or the other
operation, thisis where the name comes from.

2 important remarks.

1) For a given k, we can save a little from (1.5*log(k)) ---> (1.29*log(k)) by
choosing the adequate way to do the squaring and the multiplication by b. Knuth
analyzed thisand called this: Addition Chains.(see Brlek and Knuth).

2) By using the little Fermat theorem we can save a little also, it isfavourable
when k much larger than n but not much when k is about the size of n (basic
number theory). It saves about 30% in average, yes but coding is more
complicated then so it might be just the same.

We have to take into account that this algorithm isvery tightly written, one
more step, one more instruction makes it much slower. In BASIC the first
program | had was 432 characters long. So any addition of code makes it
slower.

The next step is to notice that there are ssimple and elegant series for natural
constants such as

é¥, 1
=1 N2

=-log(1/ 2) = log(2).

This seriesis particularly well suited sincetheterm2Mis just aSHIFT from the
right of the decimal point (in base 2), the computationisonly 1/nin fact. But we

know how to compute 1/n fast.

If we want the 108 position in base 2, we simply shift 1 position aat each step +
We would have then only to convert the final result in

the computation of 1/n.

base 2, in dl thiswe never really fully computed 1/n.

Of course al thisis convergent since k=105, yes, 1/(n*2**n) is as small as we
but for the skeptics, it satisfies the usual convergence

want. This is obvious,
tests.

Visualy we have this big triangle of numbersto add to get log(2).

0,5000000Q
0,12500000Q

00
00

0,0416666
0,0156250Q
0,00625000

6667
00
00

0
0
6
0
0
6

0,0026041
0,0011160714
0,000488281

6667
12857142857142857142857142857142857142857142857142857142857142857
5000

0,000217013¢

38889

0,000097656%
0,0000443891
0,000020345
0,000009390
0,000004359
0,0000020345
0,000000953
0,000000448
0,00000021j1
0,000000100:
0,000000047
0,0000000227
0,000000010
0,0000000051
0,0000000024
0,0000000011
0,0000000005
0,0000000003
0,0000000

5000
0455
520833
2403846153846153846153846153846153846153846153846153846153846154
5401785714285714285714285714285714285714285714285714285714285714
05208333
743164062500

18791360294117647058823529411764705882352941176470588235294117647

276258680556
8677014802631578947368421052631578947368421052631578947368421053
83715820312500
0653134300595238095238095238095238095238095238095238095238095238
3720814098011364
8301258916440217391304347826086956521739130434782608695652173913
183526865641276041667
920928955078125000
7312158437875600961538461538461538461538461538461538461538461538
7594742951569733796296296296296296296296296296296296296296296296
3304608208792550223214285714285714285714285714285714285714285714

0,00000000Q
0,00000000Q
0,0000000Q
0,00000000Q
0,00000000Q
0,00000000

6422914307692955280172413793103448275862068965517241379310344828
310440858205159505208333
1502133184863675025201612903225806451612903225806451612903225806
0727595761418342590332031250000000000000000000000000000000000000
03527737025058630741003788
0171199002686668844784007352941176470588235294117647058823529412

(0]
0
0
0
0
0
0
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000
0,000000000

0

0,0000000Q

0083153801304953438895089285714285714285714285714285714285714286
0040421986745463477240668402777777777777777777777777777777777778
0019664750308603853792757601351351351351351351351351351351351351
0009573628439715034083316200657894736842105263157894736842105263
0004664075393707324297000200320512820512820512820512820512820513
0002273736754432320594787597656250000000000000000000000000000000
0001109139880210888095018340320121951219512195121951219512195122
0000541365893912457284473237537202380952380952380952380952380952
0000264387994701432627300883448401162790697674418604651162790698
0000129189588320018215612931685014204545454545454545454545454545

0000063159354289786683188544379340277777777777777777777777777778

The left side of the vertical bars is useless in this, we can jump directly at
position k in log(k) steps. There is only one column to add of a width of 1 or 2
memory words. |We can compute that number in base b IF we can represent it
with a suitable series (like this one for 10g(2)).

1 =-1og(3/4) = log3) - 2log(2) is suitable for log(3) in

n

3
for example

n=1
base 2, by ssmply spliting the log and simple arithmetic we can get log(5),
log(7).

Since, log(1- x),Ioggél_T);% can be used to get the log of small integers.

But not al of them, log(23) is still impossible, it has to do with the factorization
of 2047 = 23*89, the factors do not appears separatly. We can have log(2047)
but not 10g(89) or log(23).

Also arctan(1/2) istrivially obtainablein base 2.

But then we have Pi, isn't?, (not so simple), here we have an identity of Euler
but it iswith something that needs base 2 and/or base 3.

p 1 1
— =arctg(=) +arctg(=
A 93) 963)

in base (2+3) ?, then ? or in base (2* 3) ? perhaps..., in base 2/3 2..., NO.

Does not compute!...

What class of numbersisthis anyway?

It isthe class of numbers that can be computed in POLY NOMIAL time andlog-
polynomial SPACE. We call that class: SC, (2 for base 2), as mentionned in

Knuth. This space is limited, we can't use FFT agorithms for large
multiplication obvisouly and base conversion is (not proved) but suspected to be
impossible. We are talking here of high precision computations, which is needed
to compute classical constants with classical algorithms. FFT (fast fourier
transform) and the Karatsuba method are critically needed to compute numbers

with more than a few thousands digits. Naive computation of n*n takes n? steps

with the “school boy™ method and about n1-28 if Karatsuba method is used, to
convince yourself of this: try to evaluate how many operations are needed to
compute n*n when nis 1 billion digits wide, the best computer in the world has

araw speed of 1012 operations+/sec. This means forever for ordinary humans.

So, inthis, it suffices to have a word size width and to be able to add a column
of numbers. The column of numbers + the last triangle (word width). We top

when m=k.

If werestrict ourselves to afew word widths (needed to square) largeur (mise au
carré) we then can compute (in base b) the numbers of the form,
¥

é, 1
na P(N)"

and consequently this number is fast-computable in base 10 (Now called Bailey-
Borwein-Plouffe computable).
¥

T}
nz N10" 9810ﬂ

which is 2log(3)-log(2)-1og(5).

For the sake of it (in the beginning of al this), I computed b=10% A the
5,000,000,000'th digit of that number using an ordinary SUN/SPARC at SFU
and the 100,000,000'th digit of log(9/10) with another computer in
Montreal.(UQAM).

We cando arctan(x), in base b b=x, like arctan(1/2) en base 2. (ok, ok).

Finally most of polylogarithms, we have to dig indentities in the beautiful book
of Lewin on polylogarithms. Like Li2(1/2) and such numbers.

With alittle inguinity and simple series manipulation we have,

g = 2arctg(1/\/§)+arctg(}/\/§)
by sending Mr Sgrt(2) on the other side, we easily find,
pv2 = 4F (L7 2)+ f(1/8)
with,
(_1)ixi
2i +1

f(x)=a
i=0

Others like that? in base 2?, yes,

-9f (L/8)=py3 +3log(3)
with,

=850

We go back then to the Lewin’"s book to get (with LLL) identities for P2,
Piz*sqrt(Z) and others with Zeta(3) and Iog(2)3 but none with Zeta(3) aone,

unfortunately.

There is one last resort : PSLQ of Bailey, the american version of the LLL
algorithm.

Ok, let’'s calm down and write what we have so far. We have the series of the
type:

n

g (-1)x" gx_
arctan seriesare n=0 2N 1 thejogs are of thetype n= N and variants of

thiswith (-1) or not at the denominator.

Part of the difficulty in this resides in the fact that ALL of the symbolic
computation packages are having big trouble dealing with complex values of
logarithms (multiples of Pi).

We have this (we know that).

if the denominator is (n) then we have series of logarithms.

if the denominator is (2n+1) then we have series with arctan’s and logs.
if itis(+/-)(2n+1) thenit is arctan also.

ifitis (3n+1) we have Pi* sgrt(3).

and what about (4n+1)? big surprise.

Thisis not the good model, all those seriesin fact areal LOGARITHM S and
only logarithms. After all : Pi isalog!, itislog(-1)/i. Arctan(x) isalso alog (in
disguise). We have the following identities by scanning systematically the
Dilogarithm.

p* =36L,(75)- 36L,(¥))- 12L,(14) + 6L, (Y54)

log(2)® = 4L,(}5) - 6L,(¥4)- 2L,(Yg)+ L,(M54)

But again, al of this is not direct, we had to fool around with functiond
equations to get them.

and also,

Those same formulas can be rewritten as,

P> _ 3 &
—=-a i_2,avecai=[1,-3,-2,-3,1-0]
36 21

and,
¥

log(2)? = & 2?;2, avec b, =[-2,-10,-7,-10,2,-]
i=1

We notice here that the computation of 1og(2), log(3), log(5) in this manner can

all be computed at the same TIME. With 15 memory cells, we can computeabout

ahundred of them all in once.

All those formulas can be re-written in the same shape, more suitable for
computer implementation.

Finally after 1-2 months of trial and errors, tests, sweat and etc, at 0h29 on
september 19, 1995 in about 2 seconds of CPU, | had a mix of programs :
PSLQ, LLL (Pari-Gp), Maple and Unix scripts all tighted in the same Maple
program, | got this.

ay, 10
=4 F ¢c=%2:- Z++ 2arct - log(5
P =4~ = 25 9(¥5) - log(5)

By collecting terms, or if we split the arctan series we can rewrite thisin amore
comprehensive manner to be,

_fjl@4 2 11
P=di6€8n+1 8n+4 8n+5 8n+60

With 4 terms that are proportional to 1/n and a shift of 1 hexadecimal digit for
each 4 terms.

The next step was to tight up a SGI Power Challenge, R8000 for 96 hours to
obtain the 40,000,000,000'th digit (binairy) of Pi which is 1, followed by
0,0,1,0,0,1,0,... about 30 bits long.

We could had found that same formulain avariety of ways, one of themis,
1

N 16x - 16 N
P 9x4 -2x°+4x - 4

Maple finds this to be valid and once expanded into an hypergeomtric series it

makes amistake in trandating an identity and comes out false.

All this creates a series of interesting thoughts and conclusions :

1) We could probably reach the 1015 position in binary of Pi with a super-
computer, it took only 1 year after that when F. Bellard reached the
400,000,000,000'th position (it is 1).

2) The adgorithm isembarassingly paralel (Rob Corless).

3) Binary digits can be computed in any order.

4) IsPi normal ?, can we prove that log(2) isnormal ?

5) Is there a formula for Pi in base 10 using this? (Yes but it takes O(n*n*n)
steps). see http://www.cecm.sfu.ca/~plouffe/Simon/articlepi.html and Pour La
Science, janvier 1997.

6) Are there any patternsin the binary expansion of log(2) ?

7) Now, if we apply modern tools in addition to the BBP algorithm and a super-
computer, can we reach 10"20?

8) 2 big hardware and software flaws have been discovered in IBM 590 et
R8000 in the process of computation of Pi.

Daniel Shanks said in 1962 (He computed Pi to 100265 deécimals),
“Wewill NEVER reach the billion’th digit of Pi.”

Borwein & Borwein (1988) :

“We will never reach the 10** 1000 digit of p and probably that the computation
of the n'th isas difficult as the computation itself”

Mr. Spock, in Star Trek, 1968 ... (The wolf in the fold).

“Computer !, compute Pi to the LAST digit”.

Referencesand URL's

LLL and PSLQ

1) Type Aattice in aMaple session or LatticeReduce in Mathematica.

2) Go to Altavista and type Ferguson-Forcade, Helaman Ferguson or David H.
Bailey. or Simon Plouffe. (hum).

Also : MPFUN, PSLQ will lead to ‘something’.

http://www.nas.nasa.gov/NAS/TechReports/RNRreports/dbailey/RNR-91-
032/RNR-91-032.html

articles on the net. :

http://www.mathsoft.com/asol ve/plouffe/plouffe.html

my home page contains agood deal of infos about al this at
http://www.cecm.sfu.ca/~plouffe

The Globe and Mail, 18 octobre 1995, pp. A1-A5.
Science News : reécent.

Simon Plouffe:
http://www.cecm.sfu.cal/personal/~plouffe

Peter B. Borwein :
http://www.cecm.sfu.ca/personal /~pborwein

David H. Bailey :
http://www.nas.nasa.gov/

