
ON THE RAPID COMPUTATION OF

VARIOUS POLYLOGARITHMIC CONSTANTS

David Bailey, Peter Borwein1and Simon Plouffe

Abstra ct.

We give algorithms for the computation of the d-th digit of certain transcendental
numbers in various bases. These algorithms can be easily implemented (multiple
precision arithmetic is not needed), require virtually no memory, and feature run
times that scale nearly linearly with the order of the digit desired. They make
it feasible to compute, for example, the billionth binary digit of log (2) or π on a
modest work station in a few hours run time.

We demonstrate this technique by computing the ten billionth hexadecimal digit of
π, the billionth hexadecimal digits of π2, log(2) and log2(2), the billionth decimal
digit of log(9/10) and the five billionth decimal digit of log(1 − 10−96).

These calculations rest on three observations. First, the d-th digit of 1/n is “easy”
to compute. Secondly, this scheme extends to certain polylogarithm and arctangent
series. Thirdly, very special types of identities exist for certain numbers like π, π2,
log(2) and log2(2). These are essentially polylogarithmic ladders in an integer base.
A number of these identities that we derive in this work appear to be new, for example
the critical identity for π:

π =
∞∑

i=0

1

16i

(4

8i + 1
−

2

8i + 4
−

1

8i + 5
−

1

8i + 6

)
.

1Research supported in part by NSERC of Canada.
1991 Mathematics Subject Classification. 11A05 11Y16 68Q25.
Key words and phrases. Computation, digits, log, polylogarithms, SC, π, algorithm.

Typeset by AMS-TEX

1

1. Introduction.

It is widely believed that computing just the d-th digit of a number like π is really
no easier than computing all of the first d digits. From a bit complexity point of
view this may well be true, although it is probably very hard to prove. What we will
show is that it is possible to compute just the d-th digit of many transcendentals in
(essentially) linear time and logarithmic space. So while this is not of fundamentally
lower complexity than the best known algorithms (for say π or log 2), this makes
such calculations feasible on modest workstations without needing to implement
arbitrary precision arithmetic.

We illustrate this by computing the ten billionth hexadecimal digit of π, the billionth
hexadecimal digits of π2, log(2) and log2(2), and the billionth decimal digit of
log(9/10). We also compute the five billionth decimal digit of log(1 − 10−96).
Details are given in Section 4.

We are interested in computing in polynomially logarithmic space and polynomial

time. This class is usually denoted SC (space = logO(1)(d) and time = dO(1) where
d is the place of the “digit” to be computed). Actually we are most interested in
the space we will denote by SC∗ of polynomially logarithmic space and (almost)

linear time (here we want the time = O(d logO(1)(d))).

It is not known whether division is possible in SC, similarly it is not known whether
base change is possible in SC. The situation is even worse in SC∗, where it is not
even known whether multiplication is possible. If two numbers are in SC∗ (in the

same base) then their product computes in time = O(d2 logO(1)(d)) and is in SC
but not obviously in SC∗. The d2 factor here is present because the logarithmic
space requirement precludes the usage of advanced multiplication techniques, such
as those based on FFTs.

We will not dwell on complexity issues except to point out that different algorithms
are needed for different bases (at least given our current ignorance about base
change) and very little closure exists on the class of numbers with d-th digit com-
putable in SC. Various of the complexity related issues are discussed in [5,7,8,10,11].

As we will show in Section 3, the class of numbers we can compute in SC∗ in base
b includes all numbers of the form

(1.1)

∞∑

k=1

1

p(k)bck

where p is a polynomial with integer coefficients and c is a positive integer. Since
addition is possible in SC∗, integer linear combinations of such numbers are also
feasible (provided the base is fixed).

The algorithm for the binary digits of π, which also shows that π is in SC∗ in base
2, rests on the following remarkable identity:

2

Theorem 1. The following identity holds:

(1.2) π =

∞∑

i=0

1

16i

(4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

This rewrites as:

(1.3) π =
∞∑

i=1

pi

16b
i
8 ci

, [pi] = [4, 0, 0,−2,−1,−1,0, 0]

where the overbar notation indicates that the sequence is periodic.

Proof. The identities are equivalent to:

(1.4) π =

∫ 1/
√

2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx.

which on substituting y :=
√

2x becomes

π =

∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy .

The equivalence of (1.2) and (1.4) is straightforward. It follows from the identity

∫ 1/
√

2

0

xk−1

1 − x8
dx =

∫ 1/
√

2

0

∞∑

i=0

xk−1+8i dx

=
1

√
2

k

∞∑

i=0

1

16i(8i + k)

That the integral (1.4) evaluates to π is an exercise in partial fractions most easily
done in Maple or Mathematica.

This proof entirely conceals the route to discovery. We found the identity (1.2) by
a combination of inspired guessing and extensive searching using the PSLQ integer
relation algorithm [3].

The identities of the next section and Section 5 show that, in base 2, π2, log2(2)
and various logs, including {log(2), log(3), . . . , log(22)} are in SC∗. (We don’t know
however if log(23) is even in SC.)

We will describe the algorithm in the Section 3. Complexity issues are discussed
in [2,4,5,6,7,8,11,15,17] and algorithmic issues in [4,5,6,7,11]. The requisite special
function theory may be found in [1,4,12,13,14,16].

3

2. Identities.

As usual, we define the m-th polylogarithm Lm by

(2.1) Lm(z) :=

∞∑

i=1

zi

im
, |z| < 1 .

The most basic identity is

(2.2) − log(1 − 2−n) = L1(1/2n)

which shows that log(1 − 2−n) is in SC∗ base 2 for integer n. (See also section 5.)

Much less obvious are the identities

(2.3) π2 = 36L2(1/2) − 36L2(1/4) − 12L2(1/8) + 6L2(1/64)

and

(2.4) log2(2) = 4L2(1/2) − 6L2(1/4) − 2L2(1/8) + L2(1/64) .

These rewrite as

(2.5)
π2

36
=

∞∑

i=1

ai

2ii2
, [ai] = [1,−3,−2,−3,1, 0]

and

(2.6)
log2(2)

2
=

∞∑

i=1

bi

2ii2
, [bi] = [2,−10,−7,−10, 2,−1] .

Here the overline notation indicates that the sequences repeat. Thus we see that
π2 and log2(2) are in SC∗ in base 2.

Identities (2.3)-(2-6) are examples of polylogarithmic ladders in the base 1/2 in
the sense of [13]. As with (1.2) we found them by searching for identities of this
type using an integer relation algorithm. We have not found them directly in print.
However (2.5) follows from equation (4.70) of [12] with α = π/3, β = π/2 and γ =
π/3. Identity (2.6) now follows from the well known identity

(2.7) 12L2(1/2) = π2 − 6 log2(2) .

There are several ladder identities involving L3:

(2.8) 35/2ζ(3) − π2 log(2) = 36L3(1/2) − 18L3(1/4) − 4L3(1/8) + L3(1/64) ,

(2.9) 2 log3(2)− 7ζ(3) = −24L3(1/2) + 18L3(1/4) + 4L3(1/8) − L3(1/64) ,

4

(2.10) 10 log3(2)−2π2 log(2) = −48L3(1/2)+54L3(1/4)+12L3(1/8)−3L3(1/64) .

The favored algorithms for π of the last centuries involved some variant of Machin’s
1706 formula:

(2.11)
π

4
= 4 arctan

1

5
− arctan

1

239
.

There are many related formula [12,13,14,16] but to be useful to us all the arguments
of the arctans have to be a power of a common base, and we have not discovered
any such formula for π . One can however write

(2.12)
π

2
= 2 arctan

1√
2

+ arctan
1√
8

This rewrites as

(2.13)
√

2π = 4f(1/2) + f(1/8) where f(x) :=

∞∑

i=1

(−1)ixi

2i + 1

and allows for the calculation of
√

2π in SC∗.

Another two identities involving Catalan’s constant G, π and log(2) are:

(2.14) G − π log(2)

8
=

∞∑

i=1

ci

2b
i+1
2 ci2

, [ci] = [1, 1,1, 0,−1,−1,−1,0]

and

(2.15)
5

96
π2 − log2(2)

8
=

∞∑

i=1

di

2b
i+1
2 ci2

, [di] = [1, 0,−1,−1,−1,0, 1, 1]

These may be found in [14 p. 105, p. 151]. Thus 8G − π log(2) is also in SC∗ in
base 2, but it is open and interesting as to whether G is itself in SC∗ in base 2.

A family of base 2 ladder identities exist:

(2.16)
Lm(1/64)

6m−1
− Lm(1/8)

3m−1
− 2 Lm(1/4)

2m−1
+

4 Lm(1/2)

9
− 5 (− log(2))

m

9m!

+
π2 (− log(2))

m−2

54 (m− 2)!
− π4 (− log(2))

m−4

486 (m− 4)!
− 403 ζ(5) (− log(2))

m−5

1296 (m − 5)!
= 0

The above identity holds for 1 ≤ m ≤ 5; when the arguments to factorials are
negative they are taken to be infinite so the corresponding terms disappear. See
[13, p. 45].

5

3. The Algorithm.

We wish to evaluate the n-th base b digit of

(3.1)

∞∑

k=1

1

p(k)bck

by evaluating the fractional part of

(3.2)
∞∑

k=1

bn

p(k)bck
.

Here p is a simple polynomial like x or x2 and c is a fixed positive integer. Evaluating
the fractional part of (3.2) will evaluate (3.1) to as many base b digits after the n-th
place as the precision of the calculation. The keys are that the fractional part of
(3.2) is the same as the fractional part of

(3.3)

∞∑

k=1

bn−ck mod p(k)

p(k)

and that bn−ck mod p(k) can be evaluated quickly. We shall now elaborate on this.

Fast evaluation of bn−ck mod p(k) is well understood; it rests on the simple fact
that if

bm ≡ r mod k

then
(bm)2 ≡ r2 mod k.

The allows for fast exponentiation mod k by the so called binary method. (Ac-
cording to Knuth [11], where details are given, this trick goes back at least to 200
B.C.) One evaluates xn rapidly by successive squaring and multiplication. This re-
duces the number of multiplications to less than 2 log2(n). An efficient formulation
of this scheme is as follows:

To compute r = bn mod c:

First set t to be the largest power of two ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod c; n ← n − t; endif

t ← t/2

if t ≥ 1 then r ← r2 mod c; go to A; endif

Note that this algorithm is entirely performed with positive integers that do not
exceed c2 in size. Further, it is not subject to round-off error, provided adequate
numeric precision is used.

The key observation is that the n-th digit of 1/k (base b) can be computed quickly,
or more precisely, that the fractional part of bm/k can be computed quickly. Let
us focus our attention on base 10 for the sake of this argument. If we solve

10n ≡ α mod k

6

then
10n

k
− α

k
∈ Z

and so 10n/k and a/k have the same fractional parts. In particular α/k gives the
digits of 1/k staring after the n-th place. This allows for the calculation of the n-th
digit of 10−j/k from the computation of

10n−j ≡ α mod k .

This explains (3.3) above.

This calculation can be done using the fast exponentiation algorithm, using numbers
of only modest precision (the largest numbers one needs to deal with are of size
k2). The number of steps needed to evaluate 10n mod k is blog2(n)c + b(n) where
b(n) is the number of ones in the binary representation of n. This can be done in
precision blog2(n)c. Thus the whole calculation is in O(log(n)) time and O(log(k))
space.

We illustrate with an example. Suppose we wish to calculate the 1000-th digit of
1/257. Applying the above algorithm to compute 10999 mod 257 we obtain after
successive steps the r values 100, 13, 195, 185, 31, 190, 120, 29, 61, and 96, which
is the result. Thus the decimal expansion of 1/257 beginning at position 1000 is
given by 96/257 = 0.373540856 · · · .

We are now in a position to evaluate the n-th “digit” (base b) of any series of the
type

S =

∞∑

k=0

1

bckp(k)

where p is a polynomial with integer coefficients. Since we are seeking the fractional
part of bnS, we simply write

(3.4) bnS mod 1 =

∞∑

k=0

bn−ck

p(k)
mod 1

=

bn/cc∑

k=0

bn−ck

p(k)
mod 1 +

∞∑

k=bn/cc+1

bn−ck

p(k)
mod 1

For each term of the first summation, the binary exponentiation scheme is used
to evaluate the numerator mod p(k). Then floating-point arithmetic is used to
perform the division and add the result to the sum mod 1. The second summation,
where powers of b are negative, may be evaluated as written using floating-point
arithmetic. It is only necessary to compute a few terms of this summation, just
enough to insure that the remaining terms sum to less than the “epsilon” of the
floating-point arithmetic being used. The final result, a fraction between 0 and 1,
is then converted to the desired base b.

7

Since floating-point arithmetic is used here in divisions and in addition modulo 1,
the result is of course subject to round-off error. If the floating-point arithmetic
system being used has the property that the result of each individual floating-point
operation is in error by at most one bit (as in systems implementing the IEEE
arithmetic standard), then no more than log2(2n) bits of the final result will be
corrupted. This is actually a generous estimate, since it does not assume any
cancelation of errors, which would yield a lower estimate. In any event, it is clear
that ordinary IEEE 64-bit arithmetic is sufficient to obtain a numerically significant
result for even a large computation, and “quad precision” (i.e. 128-bit) arithmetic,
if available, can insure that the final result is accurate to several digits beyond
the one desired. One can check the significance of a computed result beginning
at position n by also performing a computation at position n + 1 or n − 1 and
comparing the trailing digits produced.

The simplest interesting series is

∞∑

k=1

1

k2k
= log(2)

in base 2. The series for π (1.2) is only marginally more complicated.

In both cases, in order to compute the n-th binary digit (or a fixed number of binary
digits at the n-th place) we must sum O(n) terms of the series. Each term requires
O(log(n)) arithmetic operations and the required precision is O(log(n)) digits. This
gives a total bit complexity of O(n log(n)M(log(n))) where M(j) is the complexity
of multiplying j bit integers. So even with ordinary multiplication the bit complex-
ity is O(n log3(n)). This algorithm is, by a factor of log(log(log(n))), asymptotically
slower than the fastest known algorithms for generating the n-th digit by generating
all of the first n digits of log(2) or π [6]. The asymptotically fastest algorithms for
all the first n digits known requires a Strassen-Schönhage multiplication [15]; the
algorithms actually employed use an FFT based multiplication and are marginally
slower than our algorithm, from a complexity point of view, for computing just the
n-th digit. Of course this complexity analysis is totally misleading: the strength of
our algorithm rests mostly on its easy implementation in standard precision without
requiring FFT methods to accelerate the computation.

4. Computations.

We report here computations of π, log(2), log2(2), π2 and log(9/10), based on the
formulas (1.1), (2.2), (2.5), (2.6) and the identity log(9/10) = −L1(1/10), respec-
tively. We also report computations for the constant α defined as α =

∑∞
k=1 1/(kbk)

with b = 1096. This constant can be written

log(1 − 10−96) = log(1096 − 1) − log(1096) =

3 log(3)+log(7)+log(11)+log(13)+log(17)+log(37)+log(73)+log(97)+log(101)

+ log(137) + log(353) + log(449) + log(641) + log(1409) + log(9999999900000001)

+ log(75118313082913) + log(66554101249) + log(206209) + log(99990001)

8

+ log(5882353) + log(69857) + log(9901) − 96 log(2) − 96 log(5).

Each of our computations employed quad precision floating-point arithmetic for
division and sum mod 1 operations. Quad precision is supported from Fortran on
the Sun Sparc/20, the IBM RS6000/590, and the SGI Power Challenge (R8000),
which were employed by the authors in these computations. Quad precision was
also used for the exponentiation algorithm on the Sun system. On the IBM and the
SGI systems, however, we were able to avoid the usage of explicit quad precision,
at least in the exponentiation scheme, by exploiting a hardware feature common
to these two systems, namely the 106-bit internal registers in the multiply-add
operation. This saved considerable time, because quad precision operations are
significantly more expensive than 64-bit operations.

Computation of π2 and log2(2) presented a special challenge, because one must
perform the exponentiation algorithm modulo k2 instead of k. When n is larger than
only 213, some terms of the series (2.5) and (2.6) must be computed with a modulus
k2 that is greater than 226. Squares that appear in the exponentiation algorithm will
then exceed 252, which is the nearly the maximum precision of IEEE 64-bit floating-
point numbers. When n is larger than 226, then squares in the exponentiation
algorithm will exceed 2104, which is nearly the limit of quad precision.

This difficulty can be remedied using a method which has been employed for ex-
ample in searches for Wieferich primes [9]. Represent the running value r in the
exponentiation algorithm by the ordered pair (r1, r2), where r = r1 + kr2, and
where r1 and r2 are positive integers less than k. Then one can write

r2 = (r1 + kr2)
2 = r2

1 + 2r1r2k + r2
2k

2

When this is reduced mod k2, the last term disappears. The remaining expression is
of the required ordered pair form, provided that r2

1 is first reduced mod k, the carry
from this reduction is added to 2r1r2, and this sum is also reduced mod k. Note
that this scheme can be implemented with integers of size not exceeding 2k2. Since
the computation of r2 mod k2 is the key operation of the binary exponentiation
algorithm, this means that ordinary IEEE 64-bit floating-point arithmetic can be
used to compute the n-th hexadecimal digit of π2 or log2(2) for n up to about
224. For larger n, we still used this basic scheme, but we employed the multiply-
add “trick” mentioned above to avoid the need for explicit quad precision in this
section of code.

Our results are given below. The first entry, for example, gives the 106-th through
106 + 13-th hexadecimal digits of π after the “decimal” point. We believe that all
the digits shown below are correct. In most cases we did the calculations twice.
The second calculation, performed for verification purposes, was similar to the first
but shifted back one position (this changes all the arithmetic performed).

9

Constant: Base: Position: Digits from Position:

π 16 106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

log(2) 16 106 418489A9406EC9

107 815F479E2B9102

108 E648F40940E13E

109 B1EEF1252297EC

π2 16 106 685554E1228505

107 9862837AD8AABF

108 4861AAF8F861BE

109 437A2BA4A13591

log2(2) 16 106 2EC7EDB82B2DF7

107 33374B47882B32

108 3F55150F1AB3DC

109 8BA7C885CEFCE8

log(9/10) 10 106 80174212190900

107 21093001236414

108 01309302330968

109 44066397959215

α 10 5 × 109 + 65 68566899733774

The computation of α required approximately 51 hours on a Sun Sparc/20 at Simon
Fraser University. This computation likely constitutes some sort of “record”, in that
it is in excess of the 5 billionth decimal digit of a (reasonably) natural transcendental
number. The current record for π is about 4 billion digits (due to Y. Kanada of the
Univ. of Tokyo). The other computations were done on either a IBM RS6000/590 or
a SGI Power Challenge system at NASA Ames Research Center, using workstation
cycles that otherwise would have been idle.

5. Logs in base 2.

It is easy to compute, in base 2, the d-th binary digit of

(5.1) log(1 − 2−n) = L1(1/2n) .

So it is easy to compute log m for any integer m that can be written as

(5.2) m :=
(2a1 − 1)(2a2 − 1) · · · (2ah − 1)

(2b1 − 1)(2b2 − 1) · · · (2bj − 1)
.

10

In particular the n-th cyclotomic polynomial evaluated at 2 is so computable. A
check shows that all primes less than 19 are of this form. The beginning of this list
is:

{2,3, 5, 7, 11, 13,17, 31,43, 57, 73, 127, 151, 205, 257} .

Since
218 − 1 = 7 · 9 · 19 · 73,

and since 7,
√

9 and 73 are all on the above list we can compute log(19) in SC∗

from
log(19) = log(218 − 1) − log(7) − log(9)− log(73).

Note that 211 − 1 = 23 · 89 so either both log(23) and log(89) are in SC∗ or neither
is.

6. Questions.

The hardest part of our method is finding an appropriate base b expansion. We
cannot, at present, compute decimal digits of π by our methods because we know
of no identity like (1.2) in base 10. But it seems unlikely that this is inherently
impossible. This raises the following obvious problem.

1] Find an algorithm for the n-th decimal digit of π in SC∗.

It is not even clear that π is in SC in base 10 but it ought to be possible to show
this.

2] Show that π is in SC in all bases.

Numbers that are not given by special values of polylogarithms aren’t susceptible
to our methods. Is this necessarily the case?

3] Are e and
√

2 in SC (SC∗) in any base?

Similarly the treatment of log is incomplete.

4] Is log(2) in SC∗ in base 10?

5] Is log(23) in SC∗ in base 2? Does an identity of type (5.2) exist for 23?

7. Acknowledgment.

The authors wish to acknowledge helpful comments from Jonathan Borwein of
Simon Fraser University and Richard Crandall of Reed College.

11

References

1. M. Abramowitz & I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY,
1965.

2. A.V. Aho, J.E. Hopcroft, & J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

3. D.H. Bailey, J. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Experi-
mental Mathematics 3 (1994), 17–30.

4. J. Borwein, & P Borwein, Pi and the AGM – A Study in Analytic Number Theory and
Computational Complexity, Wiley, New York, NY, 1987.

5. J. Borwein & P. Borwein, On the complexity of familiar functions and numbers, SIAM Review
30 (1988), 589–601.

6. J. Borwein, P. Borwein & D.H. Bailey, Ramanujan, modular equations and approximations
to pi, M.A.A. Monthly 96 (1989), 201–219.

7. R. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach.
21 (1974), 201–206.

8. S. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control 64
(1985), 2–22.

9. R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes
(preprint).

10. R. Crandall and J. Buhler, On the evaluation of Euler sums, Experimental Mathematics 3,
(1995), 275–285.

11. D.E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, MA, 1981.

12. L. Lewin, Polylogarithms and Associated Functions, North Holland, New York, 1981.

13. L. Lewin, Structural Properties of Polylogarithms, Amer. Math. Soc., RI., 1991.

14. N. Nielsen, Der Eulersche Dilogarithmus, Halle, Leipzig, 1909.

15. A. Schönhage, Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients, in: EUROCAM (1982) Marseille, Springer Lecture
Notes in Computer Science, vol. 144, 1982, pp. 3–15.

16. J. Todd, A problem on arc tangent relations, MAA Monthly 56 (1940), 517–528.

17. H.S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cliffs, NJ, 1986.

12

Bailey: NASA Ames Resear ch Center, Mail Stop T27A-1, Moffett Field, CA, USA
94035-1000 dbailey@nas.nasa.gov

Bor wein: Dep ar tment of Ma thema tics and St a tistics, Simon Fraser University, Burn-
aby, B.C., Canad a V5A 1S6 pborwein@cecm.sfu.ca

Plouffe: Dep ar tment of Ma thema tics and St a tistics, Simon Fraser University, Burn-
aby, B.C., Canad a V5A 1S6 plouffe@cecm.sfu.ca

13

